Discontinuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity

نویسندگان

  • STIG LARSSON
  • MILENA RACHEVA
  • FARDIN SAEDPANAH
چکیده

An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimates. The theory is illustrated by a numerical example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Continuous Galerkin Method for an Integro-differential Equation Modeling Dynamic Fractional Order Viscoelasticity

We consider a fractional order integro-differential equation with a weakly singular convolution kernel. The equation with homogeneuos Dirichlet boundary conditions is reformulated as an abstract Cauchy problem, and well-posedness is verified in the context of linear semigroup theory. Then we formulate a continuous Galerkin method for the problem, and we prove stability estimates. These are then...

متن کامل

Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity

We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integrodifferential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equa...

متن کامل

Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel

An integro-differential equation involving a convolution integral with a weakly singular kernel is considered. The kernel can be that of a fractional integral. The integro-differential equation is discretized using the discontinuous Galerkin method with piecewise constant basis functions. Sparse quadrature is introduced for the convolution term to overcome the problem with the growing amount of...

متن کامل

The Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations

 Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014